H=-16t^2+160t+10

Simple and best practice solution for H=-16t^2+160t+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+160t+10 equation:



=-16H^2+160H+10
We move all terms to the left:
-(-16H^2+160H+10)=0
We get rid of parentheses
16H^2-160H-10=0
a = 16; b = -160; c = -10;
Δ = b2-4ac
Δ = -1602-4·16·(-10)
Δ = 26240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{26240}=\sqrt{64*410}=\sqrt{64}*\sqrt{410}=8\sqrt{410}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-8\sqrt{410}}{2*16}=\frac{160-8\sqrt{410}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+8\sqrt{410}}{2*16}=\frac{160+8\sqrt{410}}{32} $

See similar equations:

| 18=5/4x | | 7*n/3.2=8.4 | | 28-2.2b=11.6-54.8 | | m=2(5,4) | | 7.1=-83.9-7.1c+6.19c | | 7-1(3s+1)=4(3+5) | | 3y-y=y+5 | | 4y+23=31 | | 8x-9=-5x+17 | | -119(-233+a)=357 | | 1/7n+1/3=6/7 | | 6/13=t-5/13 | | 4q+4q–19=37 | | -7+f/2=0-1 | | -3.2+5p=-68 | | 8p+13=3(p-4)-2(p+20) | | -9(s–11)=90 | | -3f=-4f+7 | | =25−42x5−6x | | 6+w/4=-5 | | -9j=-8j-5 | | 2/3x-13=19 | | 5x-3=-45 | | 4k=-3+5k | | 0.5=x-12 | | 3x-10=16-5x | | 6m-7-m-16=22 | | 72=-2b–10bb=-8b=-6 | | 2(6x+3)=9(x-5) | | 3.7q-2.9=-5.8 | | 6y-9=8y-15 | | 10(x+7)=130 |

Equations solver categories